As we all know, the mean of two integers $A$ and $B$ is $\frac{A + B}{2}$.Similarly, let's define XOR-mean of two non-negative integers $A$ and $B$ as $\left \lfloor \frac{A \bigoplus B} {2} \right \rfloor$($\bigoplus$ is the XOR operation, $\left \lfloor x \right \rfloor$ is the integer part of $x$).Given an array $C$ of length $n$, count different triples $(i, j, k)$ that satisfy $1 \leq i < j < k \leq n$ and $C[j] = \left \lfloor \frac{C[i] \bigoplus C[k]} {2} \right \rfloor$.
输入格式
The first line contains an integer number T, the number of test cases.
For each test case :
The first line contains an integer $n$($1 \leq n \leq 50000$).
The second line contains $n$ integers $C[i]$($0 \leq C[i] \leq 50000$).