形如 2P-1的素数称为梅森数,这时 P一定也是个素数。但反过来不一定,即如果 P 是个素数,2P-1 不一定也是素数。到 1998 年底,人们已找到了 37 个麦森数。其中一个是 P=3021377,它有 909526 位。梅森数有许多重要应用,它与完全数密切相关。
任务:输入 P(1000<P<31000000),计算 2P-1的位数和最后 500 位数字(用十进制高精度数表示)
第一行:十进制高精度数 2P-1 的位数。
第 2∼11 行:十进制高精度数2P-1的最后 500位数字。(每行输出 50 位,共输出 10 行,不足 500位时高位补 0)
不必验证2P-1 与 P是否为素数。
1279
386
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000104079321946643990819252403273640855
38615262247266704805319112350403608059673360298012
23944173232418484242161395428100779138356624832346
49081399066056773207629241295093892203457731833496
61583550472959420547689811211693677147548478866962
50138443826029173234888531116082853841658502825560
46662248318909188018470682222031405210266984354887
32958028878050869736186900714720710555703168729087